10TH CLASS MATHEMATICS IMPORTANT QUESTIONS

IMPORTANT QUESTIONS

1. Find the distance between the points $\mathrm{A}(\mathrm{asin} \theta, 0) ; \mathrm{B}(0, \operatorname{acos} \theta)$
A. Distance of $\mathrm{AB}=\sqrt{\mathrm{a}^{2} \sin ^{2} \theta+\mathrm{a}^{2} \cos ^{2} \theta}$
2. In the adjacent picture
$\mathrm{AD}=3 \mathrm{~cm}, \mathrm{AB}=8 \mathrm{~cm}$,
$\mathrm{DE}=4.5 \mathrm{~cm}$. Then find BC
A.
$=\sqrt{\mathrm{a}^{2}(1)}=\mathrm{a}$

3. Calculate the length of tangent from a point 15 cm away from the centre of circle of radius 9 cm .
A.

$$
\begin{aligned}
& \mathrm{OP}^{2}=\mathrm{OA}^{2}+\mathrm{PA}^{2} \Rightarrow 15^{2} \\
& =9^{2}+\mathrm{AP}^{2}=225-81 \\
& \mathrm{AP}=\sqrt{144}=12 \mathrm{~cm}
\end{aligned}
$$

4. If $3 \tan A=4$ then find $\sin A, \cos A$.
A. $\operatorname{Tan} \mathrm{A}=\frac{4}{3}$
$\mathrm{BC}=5, \operatorname{Sin} \mathrm{~A}=\frac{4}{5}, \operatorname{Cos} \mathrm{~A}=\frac{3}{5}$

5. Express $\operatorname{Sin} 75^{\circ}+\operatorname{Cos} 65^{\circ}$ in terms of trigonometric ratios of angles between 0° and 45°.
A. $\sin (90-15)+\cos \left(90-35^{\circ}\right) \Rightarrow \cos 15^{\circ}+\sin 35^{\circ}$
6. Draw a rough diagram of the following data.
"A pole 10 m high casts a shadow 15 m long on the ground". Find the sun's Elevation.
A.

7. There are five cards in a box with numbers 1 to 5 . If one card is drawn at randomly what is the probability of an even number.
A. Total possible outcomes $n(S)=5$

Favorable outcomes ($\mathrm{n}(\mathrm{E})=$ even numbers $=2,4=2$
$\mathrm{P}(\mathrm{E})=\frac{\mathrm{N}(\mathrm{E})}{\mathrm{N}(\mathrm{S})}=\frac{2}{5}$
8. Write the formula of mean by deviation method.
A. Mean $=\bar{x}=\mathrm{A}+\frac{\Sigma \mathrm{fd}}{\Sigma \mathrm{f}}$
9. Find the probability of getting 53 sundays.
A. $\frac{2}{7}\left[\begin{array}{l}\text { In a leap year } 52 \text { sundays and } 2 \text { days } \\ 53 \text { sundays }=2 / 7\end{array}\right]$
10. If $\sin \theta=1 / 2$ then what is the value of $\sin 2 \theta$
A. $\operatorname{Sin} \theta=\sin 30$
$\Rightarrow \sin 2 \theta=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
11. In the adjacent picture

Find the area of
shaded portion.
A. Area of the shaded portion $=$ Area of right angle

$=1 / 2 \mathrm{bh}=1 / 2 \times 3 \times 4=6$ sq. units.
12. In the adjacent picture
$\mathrm{BC}=10 \mathrm{~m}, \mathrm{Ac}=20 \mathrm{~m}$
then find ' θ '.

A. In the given picture
$\sin \theta=\frac{10}{20}=\left(\frac{\text { Opposite side }}{\text { Hypotenious }}\right)$
$\sin \theta=1 / 2=\sin 30^{\circ} \Rightarrow \theta=30^{\circ}$
13. A Man goes 12 m due east and then 8 m due north. How far is he from the starting point.
A. By Pythagoras
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$=(12)^{2}+(5)^{2}$
$=144+25=169$

$\mathrm{AC}=\sqrt{169}=13 \mathrm{~m}$
14. If three coins are tossed at a time then what is the probability of 3 heads.
A. No.of Possible outcomes $n(s)=8$

No.of favorable outcomes $n(E)=1$
$\mathrm{P}(\mathrm{H})=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}=\frac{1}{8}$
15. Find the mean of 1 st 5 prime numbers
A. First 5 prime numbers $2,3,5,7,11$

Mean $=\frac{\text { Sum of observations }}{\text { No.of observations }}$

$$
\bar{x}=\frac{2+3+5+7+11}{5}=\frac{28}{5}=5.6
$$

\therefore Mean $=5.6$
16. Find the mode of $\sin 90^{\circ}, \cos 0^{\circ}, \sin 0^{\circ}$ and $\tan 45^{\circ}$.
A. We know the trigonometric ratios
$\sin 90^{\circ}=1, \cos 0^{\circ}=1, \sin 0^{\circ}=0, \tan 45^{\circ}=1$
\therefore Mode of the data $=1$
17. If the midpoint of the line segment joining the points $A(8, a-2)$ and $B(-2,4)$ is $(3,6)$. Find the value of a.
A.

We know the mid point formula
$\mathrm{P}(3,6)=\left(\frac{x_{1}+x_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)$

$$
(3,6)=\left(\frac{8-2}{2}, \frac{a-2+4}{2}\right)
$$

Compare the points
$\frac{a+2}{2}=6 \Rightarrow a+2=12$
$a=10$
18. If $\sin (\mathrm{A}-\mathrm{B})=1 / 2 \cos (\mathrm{~A}+\mathrm{B})=1 / 2,0<\mathrm{A}+\mathrm{B} \leq 90^{\circ}$, then find A $\& B$.
A. $\operatorname{Sin}(A-B)=\operatorname{Sin} 30^{\circ}$
$\Rightarrow A-B=30^{\circ}-(1)$
$\operatorname{Cos}(\mathrm{A}+\mathrm{B})=\cos 60^{\circ}$
$A+B=60^{\circ}-(2)$
From (1) \& (2) we will get
$A-B=30$
$\underline{A+B=60}$
$2 \mathrm{~A}=90$
$\mathrm{A}=45^{\circ}, \mathrm{B}=15^{\circ}$
19. In the below picture, if $\angle \mathrm{RPO}=50^{\circ}$
then find $\angle \mathrm{ROP}$

A. Given that $\angle \mathrm{RPO}=50^{\circ}$

We know that $\angle \mathrm{PRO}=90^{\circ}$

www.sakshieducation.com

(\because Radius \perp point of contact)
Sum of interior angles of a triangle is 180°
$\angle \mathrm{RPQ}+\angle \mathrm{PRO}+\angle \mathrm{POR}=180^{\circ}$
$50+90+\angle \mathrm{POR}=180^{\circ}$
$\angle \mathrm{POR}=180-140^{\circ}=40^{\circ}$
$\therefore \angle \mathrm{POR}=40^{\circ}$

MULTIPLE CHOICE QUESTIONS

1. If one root of the equation $4 x^{2}-2 x+(\lambda-4)=0$ be the reciprocal of the other, then $\lambda=$
()
1) 8
2) 7
3) 6
4) 5
2. The sum of a number and its reciprocal is $5 / 2$ Represent this situation as
1) $x^{2}+x=\frac{5}{2}$
2) $x+\frac{1}{x}=\frac{5}{2}$
3) $x-\frac{1}{x}=\frac{5}{2}$
4) None
3. From the figure the roots of the quadratic equation are

1) $-2,1$
2) $-1,2$
3) 0,1
4) 0,2
4. The roots of the quadratic equation
$\frac{x^{2}-8}{x^{2}+20}=\frac{1}{2}$ are
1) $\pm 2 \quad$ 2) ± 3
2) ± 4
3) ± 6
5. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., then
1) $2 b=a+c$
2) $b=a+c$
3) $b=a c$
4) $b=\sqrt{a c}$
6. If the sum of first k terms of an A.P. is $3 \mathrm{k}^{2}-\mathrm{k}$ and its common difference is 6 then the first term is
1) 1
2) 2
3) 3
4) 4
7. Find the sum of first 15 multiples of 8()
1) 960
2) $1000 \quad$ 3) 940
3) 1060
8. In a G.P. $3^{\text {rd }}$ term is 24 and $6^{\text {th }}$ term is 192 , then $10^{\text {th }}$ term is ()
1) 1024
2) 2048
3) 3072
4) 4024
9. In a garden there are 32 rose flowers in first row and 29 flowers in $2^{\text {nd }}$ row, 26 flowers in $3^{\text {rd }}$ row, then how many rose flowers are there in the $6^{\text {th }}$ row
()
1) 14
2) 15
3) 16
4) 17
10. The common difference of an Arithmetic progression, whose $3^{\text {rd }}$ term is 5 and $7^{\text {th }}$ term is 9 , is
()
1) 1
2) 2
3) 3
4) 4
11. The distance between $\left(x_{1}, \mathrm{y}_{1}\right)$ and $\left(x_{2}, \mathrm{y}_{2}\right)$ is
1) $\sqrt{\left(x_{2}+x_{1}\right)^{2}+\left(y_{2}+y_{1}\right)^{2}}$
2) $\sqrt{\sqrt{ }\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}+y_{1}\right)^{2}}$
3) $\sqrt{\left(x_{2}+x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\text { 4) } \sqrt{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}}
$$

12. The triangle with vertices $(-2,1),(2,-2)$ and $(5,2)$ is
1) Scalene
2) Equilateral
3) Isosceles
4) Right angled isosceles
13. The co-ordinates of the centroid of the triangle whose vertices are $(8,-5),(-4,7)$ and $(11,13)$ are
1) $(2,2) \quad 2)(3,3) \quad 3)(4,4) \quad 4)(5,5)$
14. 'Heron's formula to find the area of a triangle is
1) $\sqrt{(s-a)(s-b)(s-c)}$
2) $\sqrt{s(s+a)(s+b)(s+c)}$
3) $\sqrt{s(s-a)(s-b)(s-c)}$
4) None
15. From the figure, if area of $\Delta \mathrm{ABC}=5$ sq. units, then the area of given parallelogram is \qquad sq.units
1) 5
2) 10
3) 2.5
4) 15

6. If a straight line passing through the points $\mathrm{P}\left(x_{1}, \mathrm{y}_{1}\right), \mathrm{Q}\left(x_{2}, \mathrm{y}_{2}\right)$ is making an angle ' θ ' with positive X -axis, then the slope of the straight line is
1) $\frac{y_{2}+y_{1}}{x_{2}+x_{1}}$
2) θ
3) $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
4) $\sin \theta$
17. In triangles ABC and $\mathrm{DEF}, \angle \mathrm{A}=\angle \mathrm{E}=40^{\circ}, \mathrm{AB}: \mathrm{ED}=\mathrm{AC}: \mathrm{EF}$ and $\angle \mathrm{F}=65^{\circ}$, then $\angle \mathrm{B}=$
1) 35°
2) 65°
3) 75°
4) 85°
18. Sides of two similar triang les are in the ratio 4:9. Areas of these triangles are in the ratio ()
1) $2: 3$
2) $4: 9$
3) $81: 16$
4) $16: 81$
19. In an equilateral triangle ABC , if $\mathrm{AD} \perp \mathrm{BC}$, then
1) $2 \mathrm{AB}^{2}=3 \mathrm{AD}^{2}$
2) $4 \mathrm{AB}^{2}=3 \mathrm{AD}^{2}$
3) $3 \mathrm{AB}^{2}=4 \mathrm{AD}^{2}$
4) $3 \mathrm{AB}^{2}=2 \mathrm{AD}^{2}$
20. If $\triangle A B C$ is an isoscles triangle and D is a point on $B C$ such that $A D \perp B C$, then
1) $A B^{2}-A D^{2}=B D \cdot D C$
2) $A B^{2}-A D^{2}=B D^{2}-D C^{2}$
3) $A B^{2}+A D^{2}=B D \cdot D C$
4) $A B^{2}+A D^{2}=B D^{2}-D C^{2}$

ANSWERS

1) 1	2) 2	3) 1	4) 4	5) 1
6) 2	7) 1	8) 3	9) 4	10) 1
11) 4	12) 4	13) 4	14) 3	15) 2
16) 3	17) 3	18) 4	19) 3	20) 1

